4,161 research outputs found

    Physical Properties of a Set of Sandstones, III: the Effects Of Fine Grained Pore Filling Material on Compressional Wave Velocity

    Get PDF
    We have used aspect ratio modeling to explain the measured compressional wave velocities of twenty different dry sandstone samples with varying clay contents at a single confining pressure of 0.5 kbar. Velocities of the sandstones range between 3.1 km/sec and 5.7 km/sec. Measured porosities are between 6% and 33%, clay contents between 2% and 30%. Pores were described using three simple type classifications. The pore type distributions of the samples were quantified by point counting polished impregnated thin sections using a scanning electron microscope. A representative aspect-ratio was assigned to each of the three categories of pore type. Velocities were modeled using these aspect ratios weighted by the observed distribution of the porosity types. Agreement between theoretical and measured velocities is generally within 10%. The modeling suggests that the effects of clays in sandstone pores is to reduce the sample porosity without reducing the non-framework (void + clay) volume. Thus, for a given porosity, clay rich samples contain greater non-framework volume, which in turn lowers velocity. The model derived from the dry measurements can be used to successfully approximate empirical relationships for saturated samples of velocity-porosity-clay content taken from the literature.Schlumberger-Doll Research CenterSchlumberger Foundation. Post-Doctoral Fellowshi

    Local/Non-Local Complementarity in Topological Effects

    Get PDF
    In certain topological effects the accumulation of a quantum phase shift is accompanied by a local observable effect. We show that such effects manifest a complementarity between non-local and local attributes of the topology, which is reminiscent but yet different from the usual wave-particle complementarity. This complementarity is not a consequence of non-commutativity, rather it is due to the non-canonical nature of the observables. We suggest that a local/non-local complementarity is a general feature of topological effects that are ``dual'' to the AB effect.Comment: 4 page

    Orbitally tuned timescale and astronomical forcing in the middle Eocene to early Oligocene

    Get PDF
    Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, a robust astronomically calibrated age model was constructed for the middle Eocene to early Oligocene interval (31–43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the middle Eocene climate optimum and the Eocene–Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new timescale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and 320-U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently orbital tuning of the records to the La2011 orbital solution was conducted. The resulting new timescale revises and refines the existing orbitally tuned age model and the geomagnetic polarity timescale from 31 to 43 Ma. The newly defined absolute age for the Eocene–Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano, Italy, global stratotype section and point. The compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during 2.4 myr eccentricity cycle minima around 35.5, 38.3, and 40.1 Ma

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape

    Dependence of the BEC transition temperature on interaction strength: a perturbative analysis

    Full text link
    We compute the critical temperature T_c of a weakly interacting uniform Bose gas in the canonical ensemble, extending the criterion of condensation provided by the counting statistics for the uniform ideal gas. Using ordinary perturbation theory, we find in first order (TcTc0)/Tc0=0.93aρ1/3(T_c-T_c^0)/T_c^0 = -0.93 a\rho^{1/3}, where T_c^0 is the transition temperature of the corresponding ideal Bose gas, a is the scattering length, and ρ\rho is the particle number density.Comment: 14 pages (RevTeX

    Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation

    Get PDF
    We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local density approximation. We solve numerically the Kohn-Sham system and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange--correlation is discussed by comparison with current experiments; in particular, we investigate the effect of of the repulsive potential energy contribution due to exchange--correlation on the stability of the mixture against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review

    Initial Reports of the Deep Sea Drilling Project, vol. 85

    Get PDF
    Covering Leg 85 of the cruises of the Drilling Vessel Glomar Challenger Los Angeles, California, to Honolulu, Hawaii March-April 1982. Includes six chapters: 1. INTRODUCTION: BACKGROUND AND EXPLANATORY NOTES, DEEP SEA DRILLING PROJECT LEG 85, CENTRAL EQUATORIAL PACIFIC 2. SITE 571 3. SITE 572 4. SITE 573 5. SITE 574 6. SITE 57

    Bose-Einstein Condensation Temperature of Homogenous Weakly Interacting Bose Gas in Variational Perturbation Theory Through Six Loops

    Full text link
    We compute the shift of the transition temperature for a homogenous weakly interacting Bose gas in leading order in the scattering length a for given particle density n. Using variational perturbation theory through six loops in a classical three-dimensional scalar field theory, we obtain Delta T_c/T_c = 1.25+/-0.13 a n^(1/3), in agreement with recent Monte-Carlo results.Comment: 4 pages; omega' corrected: final result changes slightly to 1.25+/-0.13; references added; several minor change
    corecore